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Abstract-The simultaneous effects of curvature, rotation and heating/cooling of the tube complicate the 
flow and heat transfer characteristics beyond those observed in the tubes with simple curvature, rotation 
or heating/cooling. The phenomena encountered are investigated for steady, hydrodynamically and ther- 
mally fully developed laminar flow in circular tubes. A full second-order perturbation solution is obtained 
under the condition that the wall heat flux is uniform with peripherally uniform wall temperature. The 
results cover both the nature of flow transitions and the effect of these transitions on temperature distri- 
bution, friction factor and Nusselt number. When the rotation is in the same direction as the main flow 
imposed by a pressure gradient and the fluid is heated, the flow and heat transfer remain similar to those 
observed in stationary curved tubes, radially rotating straight tubes or mixed convection in stationary 
straight tubes. There are, however, quantitative changes due to the combined effects of centrifugal, Coriolis 
and buoyancy forces. A more complex behaviour is possible when the rotation is opposite to the flow due 
to the pressure gradient or when the fluid is cooled. In particular, the inward Coriolis force and/or buoyancy 
force may cause the direction of the secondary flow to reverse. The flow reversal occurs by passing through 
a four-cell vortex flow region where overall, the centrifugal, Coriolis and buoyancy forces just neutralize 

each other. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Fluid flow and heat transfer in rotating curved chan- 
nels are not only of considerable theoretical interest, 
but also of practical importance in many engineering 
applications [l, 21. The curvature and rotation, in 
conjunction with heating or cooling, introduce the 
centrifugal force, the Coriolis force and the buoyancy 
force in the momentum equations which describe the 
relative motion of fluids with respect to the channel. 
Such body forces may induce a secondary flow in 
a plane perpendicular to the main flow. This could 
significantly affect the resistance to the fluid flow and 
convective heat transfer. As well, these forces may 
either enhance or impede each other in a nonlinear 
manner depending on the directions of the rotation 
and heat flux. This could result in a complicated struc- 
ture of the flow. We examine this structure and its 
effects on flow resistance and convective heat transfer 
in the present study by a three-parameter perturbation 
method assuming the channel to be of a circular cross- 
section. 

Works on the flows and heat transfer in a rotating 
curved channel are very limited. By employing 
Pohlhausen’s method, Hocking [3] and Ludwieg [4] 

t Present address : School of Mechanical and Production 
Engineering, Nanyang Technological University, Nanyang 
Avenue, Singapore 639798. 

examined the fully developed laminar boundary layers 
in rotating curved channel with rectangular and 
square cross-section, respectively. Their results are 
valid for the large rotational Reynolds number based 
on the angular velocity of the channel, as compared 
with the Reynolds number based on the mean axial 
velocity of the fluid. Miyazaki [5,6] analysed the fully 
developed laminar flow and heat transfer in curved 
circular/rectangular channels with weak rotations by 
finite-difference method. Because of the convergence 
difficulties of the iterative solution method used, 
Miyazaki’s works did not cover the flow range where 
three forces (centrifugal, Coriolis and centrifugal-type 
buoyancy forces) are of comparable magnitude. In 
addition, all the works employ a steady model for the 
fully developed laminar flows with a positive rotation 
of the channel. Hereinafter, positive rotation means 
the rotation in the same direction as the axial flow 
imposed by a pressure gradient, and negative rotation 
means the rotation opposing the flow due to the pres- 
sure gradient. 

As the existing solutions to the problem are con- 
strained to the asymptotic limits of slow and rapid 
rotation, the secondary flow revealed by the works 
mentioned above consists of one-pair of counter-rot- 
ating vortices. The interaction of the secondary flow 
with the pressure-driven main flow causes a shift in 
the location of the maximum axial velocity away from 
the centre of the channel and in the direction of the 
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radius of tube 
pseudo Reynolds number, equation 

(5) 
axial pressure gradient, 
- (l/R,)(~P’B3) 
axial temperature gradient, 
- (1 !R,)(?t,‘~VI) 
specific heat 
constants 
Dean number 
modified Dean number through 
equation (87) 
dynamical parameter defined by 
equation (82) 
modified D,, through equation (87) 
dynamical parameter defined by 
equation (82) 
modified D, through equation (87) 
mean friction factor 
mean friction factor for a stationary 
straight tube 
heat transfer coefficent 
parameter defined by equation (42) 
parameter defined by equation (42) 
mean Nusselt number 
mean Nusselt number for a stationary 
straight tube 
coordinates 
rotational Rayleigh number, equation 

(5) 
curvature radius 
Reynolds number. equation (74) 
modified Reynolds number through 
equation (87) 
rotational Reynolds number, equation 

(5) 
axis of curvature and rotation 
fluid pressure 
pseudo pressure. 
P’ = p-p,@(R,+Rsin(p)‘!2 
Prandtl number, equation (5) 
wall heat flux 

flow rate 
defined by equation (72) 
flow rate through a stationary straight 
tube 
temperature of fluid 
mean temperature of fluid 
wall temperature 

W velocity components 
nondimensional main velocity. 
equation (4) 
mean main velocity 
expansion coefficient for M 
parameter free expansion coefficients 
for $4’ 
variable. 

Greek symbols 
thermal diffusivity 
coefficient of thermal expansion 
nondimensional temperature 
extreme value of r) 
mean temperature across the tube 
expansion coefficient for q 
parameter free expansion coefficients 
for 4 
defined by equation (8 I ) 
conductivity of fluid 
kinematic viscosity 
angular velocity 
nondimensional stream function, 
equation (4) 
expansion coefficient for 4 
parameter free expansion coefficients 
for 4 
density of fluid 
density of fluid based on wall 
temperature 
curvature ratio, equation (5) 
polar coordinate 

c,. 82. c; 0, I&,, Ran 
47 coordinate. 

secondary velocities in the middle of the channel. 
When the three forces are of comparable magnitude. 
however, a complicated structure of the secondary 
flow might be expected since then the nonlinear effects 
could be quite strong. 

In the present work, a three-parameter, regular per- 
turbation method is developed to study laminar flow 
transitions and combined free and forced convective 
heat transfer in a rotating curved circular tube. The 
specific problem considered is the curved tube rotating 

1 

at a constant angular velocity about the axis through 
the centre of the curvature. A full second-order per- 
turbation solution is obtained for the full nonlinear 
coupled governing equations under the conditions 
that the flow and temperature fields are fully 
developed, and the wall heat flux is uniform with 
peripherally uniform wall temperature. The solution 
covers both heating and cooling cases, with either 
positive or negative rotation. By excluding the effect 
of any one or two of the three factors (rotation, cur- 
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vature and heating/cooling), the solution reduces to 
each of the six special problems such as the classical 
Dean problem and mixed convection problem. 

2. FORMULATION AND PERTURBATION 
SOLUTION 

The geometrical configuration of the physical 
model for a rotating curved circular tube and its coor- 
dinate system are shown in Fig. 1. Under the action 
of the pressure gradient, a viscous fluid is allowed 
through the curved tube of circular cross-section of 
radius a with negligible pitch effect, which is rotated 
about the axis through the centre of the curvature o’z’ 
with a constant angular velocity 0. The tube is being 
uniformly heated or cooled at the wall with a heat flux 
qw. The properties of the fluid, with the exception of 
density, are taken to be constant. 

Consider a toroidal coordinate system (R, cp,Q) 
fixed to the rotating curved tube as shown in Fig. 1. 
The direction of the main flow in the tube is chosen 
in the direction of increasing 0, while the angular 
velocity of the tube is taken as R > 0 for increasing 0 
and R < 0 for decreasing 0, respectively. The velocity 
components in the increasing directions of R, q, and 
0 are denoted by U, V, W, respectively. The buoyancy 
term is expressed in terms of the coefficient of thermal 
expansion as is commonly done in free-convection 
analyses (Boussinesq approximation). The tem- 
perature difference used to express density variations 

in the buoyancy term is t, - t. In the case of hydro- 
dynamically and thermally fully developed laminar 
flow under the condition that the wall heat flux is 
uniform with peripherally uniform wall temperature, 
the governing equations are given, in terms of the 
dimensionless variables and the secondary flow stream 
function, as [7] 

o”q5 = 
1 a(A D2@) 

r(1 +arsinq) a(r,cp) 

20 !!902+ 
- (1 +ursincp)* 6~ 

- 
[ 

2cw+!$(l+orsinq) aMi 1 aY 

I 

aw 
+ 84 

(1 +orsinq)* 5 +’ ( ) (2) 

v*q = l+at,in~~~+*:-‘~] (3) 

in which 

celdrifugd-type buoyancy force 

4- + 
cooling heating 

mgative rotation poeitive rotation 

Fig. 1. Geometrical configuration and coordinate system. 



3384 L. WANG and K. C. CHENG 

The dimensionless variables are defined as 

and the dimensionless parameters are defined as 

We seek the solution of equations (l)-(3) subject 
to the condition of no-slip at the wall and the uniform 
wall heat flux with peripherally uniform wall tem- 
perature, namely. 

;f$ ;b, _=~= 
(:I icp 

14’ = rj = 0 at r = 1. (6) 

Further in the region 0 < r < 1 and ~ n < cp < x 

?f#J A/J 
?r ’ &)’ “. and 17 must be finite. (7) 

The solutions of equations (l)-(3) under the bound- 
ary conditions (6) and (7) are governed by five dimen- 
sionless parameters : c. Pr, c. Ren and Ru,,. The cur- 
vature ratio ci, a geometry parameter. represents the 
degree of curvature. Prandtl number Pr. a thermo- 
physical property parameter, represents the ratio 
of momentum diffusion rate to that of thermal 
diffusion. c is defined in an identical mathematical 
form to the usual Reynolds number Re, but using 
pseudo pressure instead of the usual fluid pressure. It 
represents the ratio of inertial force to viscous force. 
The rotational Reynolds number Rr,, emerges from 
the Coriolis term of the momentum equations. It rep- 
resents the ratio of the Coriolis force to the viscous 
force. A positive Re, represents the case of positive 
rotation. A negative Ren is for the case of negative 
rotation. The rotational Rayleigh number Ran has its 
origin in the centrifugal buoyancy terms. It is similar 
to the Rayleigh number encountered in the study of 
gravitational buoyancy due to the Earth’s gravi- 

tational held, but with the gravitational acceleration 
replaced by the centrifugal acceleration measured at 
the centreline of the tube considered. It denotes the 
ratio of centrifugal-type buoyancy force to the viscous 
force. A positive Ra, represents the cooling case, while 
a negative Ra, is for the case of heating. 

Although an exact solution of equations (I )-(3) 
would be extremely difficult to find, if indeed possible, 
an approximate solution may readily be obtained 
using a parameter perturbation method with power 
sequence as the expansion functions. A theoretical 
basis for this method can be found in ref. [7], which 
shows that any function of m variables x,. x2, , x,,, 
which is continuous for ci < .Y, < cf (i = 1.2,. ,m) 
may be approximated uniformly by a unique poly- 
nomial. The reason to choose the power sequence as 
the expansion functions is because of the uniqueness 
of the expansion and its uniform convergence rather 
than just convergence in the mean. In the literature. 
the perturbation solution is usually considered to be 
valid only for small values of perturbation parameters. 
However, we can always, in principle, find a proper 
mathematical transformation to make the per- 
turbation parameter small enough so that the solution 
is valid. The theoretical basis shown in ref. [7] also 
shows that we can achieve any accuracy required by 
a suitable choice of the number of terms in the per- 
turbation series for the entire region of the parameters. 
And the high order terms can be obtained through a 
computer [B, 91. The main drawback of the per- 
turbation method with the power sequence as the 
expansion functions is that it cannot be used to obtain 
a discontinuous solution which usually exists in the 
nonlinear problems. This leads to a disagreement 
between the perturbation solution and the numerical 
solution for Dean problem and mixed convection 
problem [ 10, 1 I] by noting that the numerical solution 
is a discontinuous one due to the bifurcation of the 
flow at intermediate and large values of the cor- 
responding dynamical parameters, 

Applying to the present problem, the method 
involves the expansion of the stream function 4, non- 
dimensional main velocity )V and temperature q in 
ascending powers of the suitable small parameters, CT. 
Ren and Ra, are selected as the parameters in this 
work. This implies the assumption of continuity of 4, 
11’ and ‘1 on g, Re, and Ra,. Then each of the 
coefficients of the expansion series for 4, IIS and d 
may be obtained from the solutions of the associated 
nonhomogeneous harmonic and biharmonic differ- 
ential equations. In calculating each additional term 
of the series, the terms on the right hand sides of the 
harmonic and biharmonic differential equations, are 
in terms of the functions determined from the solution 
of the preceding equations. Therefore successive solu- 
tions of the three main differential equations will pro- 
duce as many terms as desired for the three series 
depending upon the accuracy required. In this work, 
the solution is carried up to and including the second- 
order terms. 
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2w”,,+&2w,,,~ (20) 

(8) V’4 1 a(4010, VZ~o,o) 1 awo,o 
020 = ; a@, cp) 

--__ (21) 
2 ay 

V’4 1 woo,~ V24001) arlo10 
002 = ; 

___ 

86 44 a)! 
(22) 

where E,, Ed and cj denote, respectively, 0, Ren and 
Ran, and the coefficients depend on the coordinates 1 a(4,,,, ~44, ,. = _ ~24~~~) + ~a(~OIO,v*~IOO) 

of the points of the fluid (r, cp). r a(r, rp) r a(r, cp) 
On substitution of equation (8) into equations (1)) 

(3). sets of equations for the zeroth, first- and second- 
+2av*~olo 2w awuO, ~- -_ 

order coefficients may be obtained by equating the 
ax 

awolo 2W 
000 ay 0’0 ay 

coefficients of equal powers of E’, E'*E", Since there can 1 awloo 1 awoo 
be no flow in the (r, cp)-plane when Q = Ren = -zay-jrs’nv ay __ (23) 
Ran = 0, it follows that $oW = 0. The resulting equa- 
tions for the coefficients up to and including second- 
order are as follows : V44 

1 wloo, 
101 = y 

vvool) + px400,m~oo~ 
a(6 44 r a(6 d 

zeroth-order 

v2wooo = -4c (9) 
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ax 
--2woo,~ 

000 ay 

first-order 
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sin 50 
a(hoo9 wooo) . awoo 

a(r, cp) 
+rsincpz 

1 awool aqolo 
2 ay a_v (25) 

1 a($olo, ~~ooo) v2wo,, = - 
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+ L ~(4O”lr M’lO,,) - sin cp 
?(4”01 1 ~~‘r,,,,,) c’,t,o,,, ____ 

Y a(?, cp) S(r, cp) ?.\- 

+ L a(b”,“. “t’“ol~+~r7(~“,,,~~~“1,,) + !S! (3,) 

r e(r, cp) r ?(r. cp) 2 (Il. 

(33) 

(34) 

Similarly, we may obtain equations corresponding 
to the third and higher approximations. 

Solving equations (9)-(37) in order yields : 

stream function of secondary flow 

4 - zr(l-ry2)‘(4-rz)cosq 
‘“” - 288 (38) 

4 “r(l -r’)‘coscp 01” = I92 (39) 

&,, =&r(l-r’)‘(r’-10)cosq (40) 

dh = a~,,,“+Ren~o,o+Run~ool 

rxz 
=j~r(l-r’)‘[4-r’+L,(r’-lO)+L,]coscp, (41) 

where 

3Re, 
L, = 2F, L2 = ;fg (42) 

dh, = &$f$ r’( 1 - r2)‘(4979 - 2792r2 + 779r4 

c4 sin 2~ 
- 134r”+5rX)- ~ 5760 r2(l -r’)‘(16-7r’) (43) 

d 
c’ sin 2~ 

““’ - -----?(I -r’)‘(17-2r*-r4) (44) - 30 x 7682 

hi,12 = 
PrcZ sin 2~p 

-(10518r’-25260r4+21000rh 
44800x 1152’ 

-7280r”+ 1575r’“- 168r”+5r’“) 

C’ sin 2(p 
+ ~.- 

89600x1152’ 
(6743r’ - 11 576r4 + 840rh 

+616Or* -2380r”‘+ 192r” -9r”) (45) 

~1 
4 ,,,) -3~0~~r~(l-r~)‘(3111-1228rz 

c sin 2fp 
+208r4-36rh)+1024rL(1-r’)Z (46) 

4 
Prc’ sin 2~p 

“” = 2800x 1l522 
( - 4086r’ + 10 050r4 - 8400r” 

+3080rX-73_5r’“+96r”-5r’“) 

L” sin 2~p 
+ ~- ____ (- 7739r’ + 18 608r’ - 14 490r’ 

2800x 1152’ 

+4200r”-665r’“+84r”+2r”) 

+ s (- 37r’ + 78r4 -45r’ +4r8) (47) 

4 
Prc’ sin 2~p 

“” =537600x 1152’ 
( -268r2 + 650r4 - 525r” 

+ 175rX-3%‘“+3r”)+ cz sin 2v 
5600~1152~ 

(_ 3957rz 

+8000r4-3675rh-840rX+490r’“-l8r”) (48) 

main velocity 

M’,,~,,, = c( I -r’) (49) 

ll‘joo = ji’&r(l -r’)(19-21r’+9r4-r’)sincp 
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3c 
- 4 r( 1 - r2) sin q (50) -882r14+20r16)+ 

C3 

1400~1152~ 
(7325r2 - 6090r4 

2 

W”IO =sr(l-r2)(3-3r2+r4)sinq (51) 
-17640r6+30366r8-17850r’“+4194r’2 

2 -315r’4+10r16)+ 
C2 

‘1’““’ = r(r2 - 1)(49-51r2 7 526400 1522 
(- 88 447r2 

x 1 
160x 1152 

+188804r’-121233r6+4704r8+21560r’” 

where 

+ 19r4 - r6) sin cp (52) 

W2”” =f200 +g200 COS 2q (53) 
-5712r’2+336r’4- 12r16) 

M’II” =f,,0+9,,0c0s2q (56) 

with 

f2”” = - c5 
2800~1152~ 

(1 -r2)4(4119-4804r2 

f,,o=- c4 
8400~1152~ 

(1 -r2)4(9797-9952r2 
-t 

+ 2410r4 - 500r6 + 35r8) - &(l-r2)(148+43r2 
+4100r4 -480r6) - 

-132r4+68r6-7r8)-$(l-r2)(3-llr2) 

&(I -r2)(59-81r2 

+ 39r4 - r') 

C5 

g2”” = - 88200 x 1 l522 
r2(l -r2)(145690-240206r2 

C4 

“‘” = -5600x ll522 
r2(l -r2)(6017-9735r2 

+174649r4-70547r6+19123r8-2801r1”+160r’2) + 677Sr4 -2465r” + 545r’ -47r’“) 

+ &r2(l -r2)(463-613r2+296r4-4Or’) + &r2(l -r2)(101 -89r2+21r4) 

- $r’(l -r2) ~‘I”’ =flo, +g101 cos2cp. (57) 

Here 
W “2” =fo20 fg020 cm q7, (54) 

where .fi”, = C4 
67200x 11522 

(31951- 162 120r2 +344400r4 

h2” = - c3 
360 x 7682 

(l-r2)4(37-32r2+10r4) -397880r6f271740r8-ll1216r’o+25900r’2 

- &(l -r2)3 
-2880r14 + 105r16)+ 6400z 1 152 (771 -510r2 

C3 
-950r4 + lOOOr -325r’ + 14r’“) 

9 
02” = - 12 600 x 7682 

?(I -r2)(923- 1457r2 
Prc4 

‘I”’ = 705 600 x 1 1522 
(140 237r2 - 343 224r4 

+958r4 - 302r6 +48r8) + &r2(l-r2)(5-3r2) 
+316575r6-141 120rB+32340r’“-5292r’z 

with 

woo2 =.f”,, +9002 0.x 2rp (55) 
+540r’4-20r’6)+ 

47040;: 11522(146801r2 

.h”2 = c3 
430 080 x 11 522 

(-16525+82320r2 
- 394 1 84r4 + 433 398r6 - 263 424r8 

-170436r4+189728r6-122598r8+46032r’” 

-9268ri2 +768ri4-21r16) 
+ 3840z 1 152 (253r’ -644r4 +561r6 

Prc’ - 180r’ + 10r’“) 
SO”2 = 

9800~1152~ 
(-362375r2+883512r4 

WOll =fo,,+9”,, cos2cp 

- 807 975r6 + 352 800r* - 76 440r’” f 11 340r12 here 

(58) 
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./o, I = 1.X 
8400x4608* 

(25 337- 124740?+253 890r’ 

-275380r”t 170625rK-59472r’” + lO22Or” 

-480r”) + _kgjg ( I 3 - 40r’ + 42r’ 

-16rh+rX) 

Pr? 
““’ = 22400 x 1,522 ____-- (1763r’ -4288r’ + 3900r’ 

-1680rX+350r’“-48r“+3r’“) 

+ -__ (.; 
89600x 1152’ 

(7615r’-20264rJ+21 810r’ 

-12600rX+4130r’“-720r”+29r’4) 

+&-lj2(-21r’+35rJ-15r”+r”) 

temperature 

r/ooo = - &(3-4r’+r”) (59) 

Prc’ sin cp 
““” = 240 x 1 152 

(- 103r+240r’-220r’f 105rT 

-24r’+2r”)+ 12(0;5~~(-I46r+ZXi,-i-?OOr~ 

+75r’-15r’+r”)+ %(19r-27r’iXr’) (60) 

Prc’ sin q 
rlO”’ = 160 x 1152 

( - 27r + 60r’ - 50r’ + 20r’ - 3r’) 

+9~~~~~52(-47r+90r’-60r’+20r’-3~J) (61) 

,’ 
r 00 I = 3~~~e~‘~l~T (26% - 600r’ + 520r’ - 225r’ 

+42r’-2r”) + 19;B~~~,52(381r-735r’ 

+5OOr’-175r’+30rY-r”) (62) 

v zoo = Lo +~~m cos 2q. (63) 

where 

-56r”)+ 
c5 

--p(4741147 
28OOxll34Ox 1152’ 

- I 1677 365r2 + 15 082 200r4 - 14 597 1 OOrh 

+9823275?-4516722r”‘+l 38474Or” 

-267300r’“+28350r’h-1225r’X) 

+ ~Prc’ 
~ ( - 7877 + 51 780r’ - 10.5 300r’ 

50x 11522 

+99800r”-48975rX+11592r”‘-102Or”) 

+ i~vz$-~~ (2905 - 2968r’ - 1080r“ + l8OOr” 

-K25r”+180r”‘-12r”)+~4(-6-28r~ 

+5lr”- 17rh) 

pr2p 
‘~~2llO = ~~-~~-~(-2132r’-4620r4+27510r” 

100800x 1152’ 

-41 748rX+31 395r’“- 13 176r”+315Or’” 

-400r’h+21r’8)+ 
Prc’ 

1750x1152’ 
(806 072r’ 

- 2 292 480r4 + 2 7 11 190r’ - 1 762 464r8 + 680 4OOr’” 

- 167760r”+27595r”-2640r’h+87r’X) 

+ i;7<~yi; (239 005r’ - 582 760r’ + 578 844r’ 

-331 884rX+122598r”‘-30744r”+5481r’J 

-564r”‘+24r’“)+ &fcij(- 12 189r’ 

+31 220f-32340r6+17458rX-4585r’“+436r”) 
i 

(’ + ~~~ ~--~ (- 24 034r2 + 52 360r4 -42 945r’ 
175x ll52* 

+18396rH-4095r”‘+318r”)+ i&(l49r’ 

-220r”+71rh) 
~~~~~~ = hclzu +m,,, cos2cp 

here 

(64) 

h 
Pr’c’ 

““’ = I1 200x 1152’ 
~~- -~~ (563 - 2835r’ + 5985r4 

h 
pr2 (3 

= 302400 x l152* 
(97207-519120r’+l 1888lOr’ 

- 6895rh +4725rx - 1953r’“+455r” -45r’“) 
20” 

- 1536 360r’ + 1242 045r’ - 655 452r”’ + 225 54Or’ ’ 

/ Prc3 
134400x ll522 

(2071- 9870r’ + 19 320r4 

-48060r’4+5670r’“-280r’X)+ 
Prc,’ 

525 x 1152’ (58 72’ 
-20090r6+12075rX-4326r’“+910r”-90r’4) 

(.i 

-294336~’ +618408r4 -712488rh +498456rX 

-223 776r’” +66276r” - 12528r’” + 1323rlh 

+ 
125440x 1152’ 

(3029 - 7252r’ + 8820r4 

-7840r6 +4655rX - 1764~‘” +392r” -40r14) 



nZ”Z” = 896L:;152z (37r* - 1680r4 f4830r” 

-5600r8+3220r’o-912r’2+105r’4) 

Prc’ 
+ 

134400 x 11522 
(5245r* - 14 000r4 + 14 700r6 

- 7644r’ + 1855r’” - 156r’*) 

+_ c3 

134400~1152~ 
(766r2 - 1 846r4 + 1 785rh 

where 

h 
Pr’c’ 

““* = 13440x 11523 
(129 578 - 667 SOOr* 

(65) 

+ 1457 190r4 - 1762 320r’ + 1300 005r” - 604 044r’” 

+ 173 124r’2-27756r’4+2079r’6-56r’8) 

Prc3 
+-- 

67200x 1152’ 
(197 494 - 960 1 20r2 + I 934 226r4 

-2100588rh+1351413r8-539784r’” 

C’ 
+-- 

6125~1152~ 
(32 257 522 - 78 080 625r2 

+ 97 240 5OOr“ - 89 478 900r6 + 56 029 050r’ 

-23171022r’“+6041700r’2-893700r’4 

Pr’c’ 
m”“2 = 224 x 537 600 x 1152* 

(843810r2-2640232r“ 

+ 3 586 1 56r6 - 2 779 56Or* + 1 308 79Or’” 

-375984ri2+61 397r’4-4496r’6+119r’8) 

+56rs-2lr’“)f 1920~l~52(-136r2+277r4 

+ 86 668 470r6 - 39 870 432r8 + 6 703 200r’” 

+624960r’2-223020r’4+10080r’6-759r’8) 

Prc’ 
+- 

960x9800x 1152’ 
(35391 181r*-89303680r4 

- 195r6 +62r* -8r’“) 

‘?I”1 = h’“, +mto, cos2q 

here C3 
+ 

134400x 11523 
(-32212r2+58600r4-18270r6 

-28224r8+30366d0 - 12240r’* +2097r14 
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-120r’h+3r’8)+ 
2 

1568000x 1152’ 
(795 95lr’ 

- 1768 940r4 + 1416 030r6 - 484 932r* + 11760r’ ” 

+36960r’2-7140r’4+320r’6-9r’8) 
‘Ill” =h,,,+m,,,cos2q 

where 

(66) 

h 
Pr2c4 

“” = 
134400 l522 
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1 

+ 390 1 80r4 
x 

-477400r6 +35742Or” - 169008r’” +49280r’* 

-7920r’4+525r’6)+ 
Pm4 

268800x 1152* 
(20 795 

- 101 696r2 +206 556r4 - 226912r6 + 148 330r’ 

-60480r’” + 15 596r’2-2336r’4+ 147r16) 

c4 
+ 

940800x 11522 
(112 955 - 274 3 16r2 + 343 980r4 

-319480r6+202615r*-85260r’“+22736r’* 

+ 38 4oiX 1 1 52 (5407 - 8380r* + 3900r4 - lOOOr 

+25r* +48r”) 

Pr2c4 
m 

“” =67200x 1152* 
(- 508r* -4340r4 + 16 275r’ 

-21 392r8+14070r’0-4920r’2+875r’4-60r’6) 

Prc4 
+ 

1225~1152~ 
(364057r* - 1010 310r4 + 1 143 072r6 

-442r16)+ C4 

1225x1152’ 
(52 085r* - 126 357r4 

-47r”) + 768rxcf1 52 (- 30r2 + 40r4 - 45r6 

(67) 

h 
Pr2c4 

‘“’ =4200x 11523 
(- 50188 1 + 2 633 400r2 



3390 L. WANG and K. C. CHENG 

- 5 889 240r” + 7 369 320rh - 5 700 870r” + 2 83 I 976r’” 
+ 43008~~~ l,52~(-53931+259616r’-515676r’ 

+ 8400P~l’l 5~ ( - 304 597 + I 503 936r’ - 3 095 820r” 

+3467 184rh-2331 882rX+991 872r”‘-272916r” 

+46080r” -3969r” + 1 l2r”) 

2 
+ pm~--p(-24731219 

441000x 1152’ 

+ 60 387 390r* - 76 601 700r” 

+ 72 324 OOOr’ - 46 999 575rX + 20 543 544r’ ’ 

-5838840r”+999000r’I-85050r”‘+2450r’*) 

.’ 

+ 8oo/:1F i 52? (20 201- 129 900r’ +254 700r’ 

-227OOOr’+ 100275r’- 19296r’” 

+ 1020r”)+ 307 2o;)ex , , 52 ( - 7623 + 772%’ 

+2880r4 -4600rh+ 1975r” -372r” + 12r”) 

Pr’c” 
m 

‘“’ = 19600x ll52? 
(-901994r’+3239712r 

-5 184816rh+4770 192rX-2672460r’“+913248r 

-181 167r”+17936r’h-651r’X) 

Prc” 
+ ( - 28 769 699r’ 

1152’ 
+ 79 473 2OOr” 

294000 x 

-89945730r” +54780768r” - 19051 200r”’ 

+4049640r” -584325r’J+47880r’“-534r’S) 

+-- 
49000x 1152’ 

( - 598 003r’ + 1468 0 1 Or” 

- 1478 1 90rh + 866 796rX - 329 280r’ ” + 83 58Or’ 
-14070r’4+I190r’“-33r’X) 

1 

+ 1075~~~~l152(-56141r’+146580r.’ 

-144585rh+66262rX-1288Or’“+764r”) 
(2 

+ ______- (18 554r’ - 33 740r4 + 19 845rh 
2800~1152~ 

-_5376rX+735r”‘- l8r”) 
voII = ho,,+m0,,cos2~. 

where 

(68) 

h 
Pr’c’ 

“’ =2l5O4OOxll522 
(-88211+449400r’ 

- 964 740r” + I 139 320rh - 8 11 020rX + 356 496r”’ 

+548352rh-341530rX+129696r’“-30156r” 

+3776r’” - 147r”) + 
(.J 

---p(-294695 
940800 x 46082 

+ 709 436r’ - 873 l80r’ + 789 880rh -48 19 l5r” 

+ I’$1 100r”‘-46256r”+5840r’~-210r’h) 

+ 96tj&60~ ( - 503 + 975r’ - 750r” 

+ 350r” - 75rX + 3r”‘) 

pr2(.’ 
111 ~~- --- 

“I’ =6xl1202xl152’ 
( - 130 520r’ +461 l32r’ 

711921r”+613424rK-307230r’“+86856r” 

-- 12257r”‘+516r’“)+ 
Prc, ’ 

l4O’x 1152’ 
( - 540 835r’ 

-t I 419 I 38rJ ~ 1458 072r” + 736 806r’ - 167 58Or”’ 

c.’ 
+ m--~-p(-65381r’+159915r4-159579rh 

14O’xl152’ 

+91 602rX-33075r’“+7434r”-945r’J+29r’h) 

i-- 160 zs (86r’ - 168~~ + 105rh -24r8 fr”‘). 

It is apparent that M’““~ and ~,~00 give the velocity and 
temperature distributions in a stationary straight tube. 
The results (38), (43). (50) and (53) are the cor- 
responding solutions for a stationary curved tube cal- 
culated in ref. [12]. And the solutions (39), (44). (51) 
and (54) are in agreement with ref. [ 131. 

Similarly, we may obtain higher order solutions. 
However, the amount of labour required is consider- 
able. Also it is hard to tell under what conditions the 
higher order solutions are needed until we get enough 
terms to unveil the analytic structure of the solution. 
Usually a perturbation solution is carried to the 
second approximation. Now, the routine labour of 
calculating higher approximations may be delegated 
to a computer. Then, dozens or even hundreds of 
terms may typically be found. These may suffice to 
permit the structure of the solution to be analyzed 
for a single power series, and the solution may be 
improved to extend its utility [S, 91. Unfortunately, 
there is no such approach available at the present 
time for analyzing the multiple series in this problem. 
Besides, even for single power series, we must obtain 
the first few terms of the solution by hand in order to 
use computer to obtain higher order solutions. 

It should be noted that the solutions of c$, ti’ and 1 
reduce to the corresponding ones of the six special 
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cases by setting any one or two of o, Ren and Ra, to 
be zero. They are Dean problem, Coriolis problem, 
mixed convection problem, Dean problem with the 
effect of rotation, Dean problem with the effect of 
heating/cooling and Coriolis problem with the effect 
of heating/cooling. 

3. RESULTS AND DISCUSSION 

3.1. Flow transitions in secondary$ow 
3.1.1. First-order approximation. To the first-order 

of approximation, the secondary flow pattern is deter- 
mined by 4, (equation (41)). 4, reaches its extreme 
values under the conditions 

ati, 34, -_=-_=O 
ar acp 

which requires 

7(1 -LZ)r4 -(24+5L, -53L,)r2 

+(4+L, -lOL,) = 0 (69) 

sin cp = 0. (70) 

According to the definition of stream function 
(equation (4)) and the extreme conditions, both the 
radial and tangential components of the velocity in 
the cross-section vanish at the extreme points. The 
streamlines of motion through these points are circles 
(in a plane parallel to the axis of the tube) with the 
centres located at the axis of the rotation of the tube. 
The motion of the fluid may then be regarded as screw 
motions about these circular streamlines. In other 
words, the locations of the extreme points of 4, rep- 
resent the centres of the screw motion of the fluid. The 
extreme values, on the other hand, have two impli- 
cations. Their absolute values reflect the strength of 
the secondary flow, and their sign denotes the direc- 
tion of the screw motion, namely, positive for counter- 
clockwise circulation and negative for clockwise 
circulation. 

The locations of the extreme points are determined 
by the solutions of the equations (69) and (70). Equa- 
tion (70) has two solutions in the flow domain 
0 < rp < 2a, namely, rp = 0 and cp = n. Thus, all 
extreme points are located along the vertical centre- 
line. 

The radial distance of the extreme points is deter- 
mined by the solutions of the equation (69) which 
depend on the two dimensionless parameters, namely, 
L, and L,. For some L, and L,, equation (69) has only 
one solution (r,,) which gives a minimum value of 4, 
with a negative sign. For some other L, and Lz, equa- 
tion (69) has only one solution (Ye,,,) which yields a 
maximum value of 4, with a positive sign. For still 
other L, and L,, equation (69) has two solutions (r,, 
and rXm) which result in a minimum value of 4, with 
a negative sign and a maximum value of 4, with a 
positive sign, respectively. The structure of the solu- 

tion is summarized in Table 1. The readers are referred 
to ref. [7] for a detailed analysis on the variations of 
rim and rZm with L, and Lz. 

Table 1 shows that in the laminar flow region, the 
secondary flow experiences two transitions which 
occur at L, = lOL,-4 and L, = 9L2-3, respectively. 
Consequently, the secondary flow appears as three 
different patterns, namely, two cells of counter-clock- 
wisely circulating vortices; two cells of clockwisely 
circulating vortices ; and two-pairs (four cells) of 
counter-rotating vortices which are directed opposite 
to each other. 

Typical secondary flow patterns are illustrated in 
the first column of Fig. 2. The symmetry about the 
horizontal centreline allows us to show the upper half 
of the cross-section only. In the figure, the stream 
function is normalized by its maximum absolute 
value. The cross denotes the position at which the 
stream function reaches its maximum absolute value. 
And two numbers for each case are the value of the 
L, and the extreme value of the stream function which 
yields the maximum absolute value. A vortex with a 
positive (negative) value of the stream function indi- 
cates a counter-clockwise (clockwise) circulation. 

WhenL, > 9L,-3andL, < 1 orL, > lOL,-4and 
L2 >, 1, the secondary Ilow appears as two-cell, coun- 
ter-rotating vortices as shown in Fig. 2(a, b). When 
L, is in the region lOL*--4 < L, < 9L,- 3 and L2 < 1 
or 9L,- 3 < L, < lOL*-4 and L2 > 1, the secondary 
flow appears as two pairs (four cell) of counter- 
rotating vortices, with one pair in clockwise cir- 
culation and the other in counterclockwise circulation 
[Fig. 2(c,d)]. When L, < lOL,-4 and L2 < 1 or 
L, 6 9L2 - 3 and Lz > 1, however, the secondary flow 
becomes two cell counter-rotating vortices again, but 
with the direction of clockwise circulation as shown 
in Fig. 2(e, f). 

Three points are worthy of mention regarding the 
four cell vortex structure [Fig. 2(c, d)] : (1) this struc- 
ture is qualitatively different from the four cell vortex 
families encountered in Dean, Coriolis or mixed con- 
vection problems. (2) Its strength is very weak. This 
can be inferred from the maximum absolute value of 
the stream function. The analysis of force mechanism 
suggests that the centrifugal, Coriolis and buoyancy 
forces, overall, just neutralize each other in this region. 
(3) The clockwise circulating vortices occur near the 
tube wall if L2 < 1 [Fig. 2(c, d)]. If Lz > 1, however, 
they will appear in the central position of the cross- 
section of the tube as shown in Fig. 2(g). 

For an isothermal flow in a rotating curved channel 
without effect of heating/cooling, the stability analysis 
made in ref. [14] concludes that there exist two poten- 
tially unstable regions separated by two stable regions 
in the cross-plane when the flow is in the region with 
four cell secondary flow structure. Visualization of the 
secondary flow in a rotating curved square channel in 
ref. [14] explored a similar structure as the four cell 
structure found in the present work. 

3.1.2. Second-order approximation. The second col- 
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Table Distribution of the solution with L, and L2 

Region 
Solution 

Region 
Solution 

L, 6 10L2p4 
ri,,, 

L, < YL,-3 
)‘ I ,,, 

YL, --3 4 L, 6 IOL-4 
I’,,,, and r2,1, 

(b) 

(-37.5, -1.710) (-37.5, -1.760) 

(10.87, 0.00189) (10.87, 0.00373) 

Fig. 2. Secondary flow patterns : (a&) at CJ = 0.02, Pr = 0.7, 
c = 60 and L, = - 1.0; (g) at (r = 0.01, Pr = 0.7. c = 50 and 
L2 = 1.5 ( first column : first-order; second column : second- 

order). 

umn in Fig. 2 illustrates the secondary flow patterns 
based on full second-order approximation. The cor- 
responding first-order secondary flow patterns are 
shown in the first column of the figure. A striking 
feature is that the symmetry about the vertical 

centreline exhibited in the first-order secondary flow 
breaks down with the circulation centre of vortices 
shifting away from the vertical centreline. Also the 
corresponding vortices are distored in some ways. In 
particular, the circulation centre for all clockwise cir- 
culation vortices moves inward and downward, while 
that for all counter-clockwise circulation vortices 
moves outward and upward with the exception of that 
in Fig. 2(g). This trend is also more noticeable in 
the region with four cell patterns. Another interesting 
feature is that the region with four cell secondary flow 
is wider than that of the corresponding first-order 
secondary flow. 

Three factors contribute to the generation of the 
secondary flow in this problem: curvature, rotation 
and heating/cooling. The secondary flow patterns dis- 
cussed in Fig. 2 result from the combined effect of all 
these three factors. The analytical solutions, however, 
allow us to visualize the secondary flow due to one or 
any two of these three factors simply by setting some 
terms in the series to be zero. In other words, the 
solutions can be used to analyse the secondary flows 
for several special cases. They are secondary flows in 
curved tubes (classical Dean problem), radially rot- 
ating tubes (Coriolis problem). stationary straight 
tubes with heating/cooling (mixed convection prob- 
lem). rotating curved tubes, curved tubes with heating/ 
cooling and radially rotating straight tubes with 
heating/cooling. Figure 3 is one set of such secondary 
flows, which exhibit several interesting features to be 
noted below. 

All the first-order terms in the series result in a 
symmetric (about vertical centreline) one pair- 
counter-rotating secondary flow with the centres of 
circulation located on the vertical centreline. Note that 
the first order approximation is valid for sufficiently 
small values of the dynamical parameters, the struc- 
ture of the fully developed secondary flow in Dean 
problem, Coriolis problem and mixed-convection 
problem, then, consists of one pair (two cell) counter- 
rotating vortices with one cell located in the upper 
half and another in the lower half of the cross-section 
at sufficiently small values of the dynamical 
parameters. They are also symmetric about the ver- 
tical centreline. This is in agreement with the previous 
works for the corresponding problems. 

All the second-order terms in the series of the stream 
function cause the secondary flow to exhibit a four 
cell pattern with the centre of the circulation away 
from the vertical centreline. It is interesting to note 
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(a) d10oQ (b) 

(3 4llow3 

i+j+k* 

04 

i+j+i=I 

ix0 j=O k0 
. 
i+j+bSl 

Fig. 3. Secondary flow with one, two or three effects of curvature, rotation and heating/cooling at CJ = 0.01, 
Pr = 0.7, c = 100, L, = 1 .I and L, = 0.5 [(a-c) first-order terms due to single effect of curvature, rotation 
and heating/cooling; (d-f) second-order terms due to single effect of curvature, rotation and heating/ 
cooling; (g-i) first-order terms+second-order terms due to single effect of curvature, rotation and 
heating/cooling ; (i-i) second-order terms due to combined effect of curvature and rotation, curvature and 
heating/cooling and rotation and heating/cooling ; (m-o) first-order terms + second-order terms due to 
combined effect of curvature and rotation, curvature and heating/cooling and rotation and heating/cooling ; 
(p-r) first-order terms, second-order terms and first-order terms+second-order terms due to combined 

effect of all three factors]. 

that the secondary flow due to the second-order term 
itself is still symmetric about the vertical centreline. 
The symmetry is, however, lost in the secondary flow 
resulting from all the first-order and second-order 
terms in the series. This breakdown of the symmetry 
comes from the asymmetric effect of second-order 
terms on the first-order terms about the vertical 
centreline, i.e. the secondary flow of the second-order 
terms enhances that of the first-order terms on one 
side of the vertical centreline, but neutralizes it on the 
other side of the centreline. 

The secondary flow with the simultaneous effect 
of more than one factor of curvature, rotation and 
heating/cooling may be qualitatively similar to or 

completely different from that with only one factor 
depending on the region of the governing parameters. 

3.2. Flow transitions in mainjow 
Figure 4 shows several typical main flow isovels and 

profiles based on the second-order approximation. 
The corresponding secondary flows are shown in Fig. 
2. Once again, the symmetry of flow about the hori- 
zontal centreline allows us to show the upper half of 
the cross-section only. A cross in the figure denotes the 
position at which the main flow reaches its maximum 
value. The value of L, and the maximum value of the 
main velocity are given in the figure for each case. 

Some features of the main flow can be expected and 
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(0.0, 59.998) 

(25.0, 54.384) 

(-13.5, 59.987) 

(-37.5, 53.084) 

(b) 

(4 

Fig. 4. Main velocity distributions at ci = 0.02. Pr = 0.7, 
(’ = 60 and Lz = - 1 .O (first column : isovels ; second col- 

umn : profiles). 

understood through the force balance in the governing 
equation. It is the secondary flow that causes the devi- 
ation of the main flow away from the parabolic profile 
in Poiseuille flow. The secondary flow affects the main 
flow through three terms: the convection term, and 
two Coriolis terms due to the curvature and rotation. 
respectively. The two Coriolis terms may be in the 
same direction or opposite to the main flow depending 
on the sign of U sin y + Vcos cp and R. The absence of 
these three terms leads to the Poiseuille solution with 
an axisymmetric and parabolic profile [Fig. 4(a)]. The 
relative importance of the different terms depends on 
the magnitudes of the governing parameters. and 
shows different flow patterns for different regions. The 
driving term is the axial pressure gradient which is 

always important. The viscous term is always impor- 
tant near the wall, but may not be significant in the 
core region for certain ranges of the parameters. If the 
rotation speed is high enough, the Coriolis terms could 
be of the same order of magnitude as that of the 
pressure gradient term. The main flow would. then, 
exhibit a geostrophic pattern in the centre of the cross- 
section surrounded by a thin boundary layer accord- 
ing to the theory of rotating fluid [15]. This is one 
limiting case examined in refs. [3, 41. 

As discussed in Section 3.1, secondary flow is very 
weak in the region where centrifugal, Coriolis and 
buoyancy forces just neutralize each other. Conse- 
quently. it is too weak to modify the main flow effec- 
tively such that the profiles of the main flow are essen- 
tially axisymmetric and parabolic with the maximum 
value occurring along the horizontal centreline at or 
very close to the centre of the cross-section [Fig. 4(c)]. 
In this region, the inertial force in equation (2) is very 
weak as compared with the viscous force. The driving 
force for the main flow (i.e. pressure term) is mainly 
balanced by the viscous force in whole flow domain. 
Other forces (inertial, Coriolis forces) are very weak. 

When the value of L, is away from the region where 
the centrifugal, Coriolis and buoyancy forces just neu- 
tralize each other, the secondary flow becomes stron- 
ger (Fig. 2). The profile of the main flow becomes. 
then, distorted with the peak moving away from the 
centre of the cross-section toward the outer wall for 
the case of increasing value of L, [Fig. 4(b)] or the 
inner wall for the case of decreasing value of L, [Fig. 
4(d)] along the horizontal centreline. In either of the 
two cases, the location of the maximum main velocity 
is away from the centre of the tube and in the direction 
of the secondary velocities in the middle of the tube. 
Due to the shift of the peak of the main flow, the 
isovels are more sparsely spaced in the region near the 
inner wall (outer wall) than near the outer wall (inner 
wall) in Fig. 4(b) [Fig. 4(d)]. Consequently, pro- 
nounced peripheral variations are expected in the local 
friction factors. The flow in the tube core is not geo- 
strophic. it is ageostrophic, i.e. the pressure gradients 
are balanced by both Coriolis force and convective 
inertial force. 

A striking feature which can be inferred from Fig. 
4(a -d) is that the region of return flow along the 
walls appears to be far too thick to be described by 
boundary layer approximations. Consequently, the 
integral type method developed by Mori rt al. [ 16. 171 
may not be valid for these regions of flow. 

3.3. Temperuture distribution 
Figure 5 demonstrates the way in which the sec- 

ondary flow affects the temperature profiles based on 
the second-order solution of the temperature. In the 
figure, the nondimensional temperature 1 has been 
normalized by its corresponding extreme value qe, and 
the extreme point is illustrated by a cross. Two num- 
bers for each case are, respectively, the value of the L, 
and the extreme value of II. 
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(0.0, -11.250) 

(25.0, -8.665) 

(4 

(-37.5, -8.963) 

Fig. 5. Temperature distributions at SJ = 0.02, Pr = 0.7, 154lc4 
c = 60 and L2 = - 1 .O (first column : isothermals ; second Q,=l- 

column : profiles). 3150~1152~ 

- It is the secondary flow that causes the deviation 
of the temperature from the parabolic profile in the 
stationary straight tubes. The effect of the secondary ill? 8077~~ 
flow enters the energy equation through one term, i.e. 

- 
280x 11522 

+ & 
50400x1152’ 

the convection term. The absence of this term leads to 
the parabolic profile which has an axisymmetric and 29 97c2 
parabolic profile [Fig. S(a)]. In the region with the +240x1152 430 080 x 4608 
four cell secondary flow, the secondary flow is too 
weak to modify the temperature distributions effec- 
tively. Consequently, the temperature profile in this (72) 
region exhibits essentially axisymmetric and parabolic 
with an extreme value appearing along the horizontal and the mean main velocity w, is 
centreline, at, or very close to, the centre of the cross- 
section [Fig. 5(c)]. Q vcQ, 

When L, moves away from this region in both direc- 
wnl - 

za2 2a 
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tions, the stronger secondary flow causes the tem- 
perature profile to be distorted with the extreme point 
shifting from the centre of the cross-section to the 
outer wall for the case of increasing L, [Fig. 5(b)] or 
to the inner wall for the case of decreasing L, [Fig. 
5(d)] along the horizontal centreline. The shift of the 
extreme point results in a more tightly spaced iso- 
therms in the region near the outer wall [Fig. 5(b)] or 
near the inner wall [Fig. S(d)]. This results from the 
larger gradient of the main flow in these regions [Fig. 
4(b, d)] and will cause pronounced peripheral vari- 
ations in the local Nusselt number. 

Two interesting results can be inferred from the 
temperature profiles shown in Fig. S(ad). One is that 
the theory of thermal boundary layer is not valid for 
the temperature fields in these regions of the par- 
ameters because the layer along the walls is too thick 
to be described by the theory. Another is that the 
temperature distributions are qualitatively similar to 
the corresponding ones of the main flow. This implies 
that the Coriolis terms in the momentum equation for 
main flow are not strong enough to dominante in 
these regions of the parameters, by noting that only 
difference between the momentum equation for main 
flow and energy equation for temperature is the exis- 
tence of the Coriolis terms in the momentum equation. 

3.4. Mean friction factor and Nusselt number 
3.4.1. The friction factor. Substituting the 

expression for w, based on a second-order solution, 
into the definition of flow rate Q 

Q= 2n a ss 277 I 

WRdRdq = ss avwr dr dq 
0 0 0 0 

we obtain 

where 

Q = YQ,, (71) 
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Then the Reynolds number with the diameter of the 
tube as a characteristic length is 

(74) 

From equation (49), the flow rate of the fluid 
through a stationary straight tube is 

Then we may define the ratio of the how rates as 

; =Q,. (75) 

This agrees with those in refs. [12. 13, 181 for the 
special cases they considered. 

Since the mean friction factor for a rotating curved 
tube is defined by 

we have 

where .f;( = 64iRe) is the mean friction factor for a 
stationary straight tube. It is interesting to note that 
Prandtl number does not appear explicitly in the 
expressions of Q/Q& and.f//;, although it was present 
in the second-order solution of the main velocity. 

Figure 6(a) illustrates the typical trends for the fric- 
tion factor variation with L, and L2 at D = 0.02 and 
c = 60. For any specified L,, there exists a region of 
L, where the friction fdCtOr is identical or very close 
to that in a stationary straight tube when centrifugal. 
Coriolis and buoyancy forces just neutralize each 
other. As L, moves away from this region at a specified 
value of Lz, the friction factor increases. Apparently 
the increased resistance to the flow results from the 
stonger secondary flow. Furthermore, the increase in 
friction factor becomes more significant as 1 L,l 
increases. At a specified value of L,, the flow impedi- 
ment at higher values of Lz is relatively greater if the 
value of L, is at the left of the low friction factor 
region, but is relatively smaller if the value of L, is at 

the right of the region. 
3.4.2. The Nusselt number. Energy balance 

’ “‘&z 7lu- It‘,, = 27rah(r, - t,,) 

and the definition of the mean Nusseh number 

2uh 
Nu = 7 

1. 

yield 

Nu = !B 
2r?,,, 

(77) 

in which q,,, is an integrated mean temperature across 
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FIN. 0. The influence of secondary llow on flow resistance 
and heat transfer. 

the tube (sometimes referred to as an unweighed 
mean) and defined as [I] 

rlrdrd(p 

Substituting the second-order solution of q into the 
expression above yields 

1171PV’(,5 
Vrn = 

22400x 1152’ 

4169Pr(,’ 117lc5 
+m ---+- 

5x50400~1152~ 22400 x 1 1522 

17Prt” 481c’ 29~ 
6720~1152+6720~1152 

___ 
1536 > 

+ Re: 
17Pr’c’ 293Prc’ 

2293760~1152+~-520~,~52~ 

72 143Pr’c’ 

44800x 1152’ 
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51 383Prc3 72 143~~ 
+ 

112000x11523 
+ 

44800x 11523 > 

2129Pr2c4 2107Prc4 
+ aRen 

( 50400x 11522 
+ 

201600x1152= 

2129~~ Prc2 19c2 
+ 

50400x 1152= -960x1152+320x1152 

21 571Pr2c4 
- aRa, 

( 

7291 Prc4 
1400~1152~ 

+ 
1344000x 1152= 

27 571~~ Prc2 253~~ 
+ 

1400x 11523 -~+21504x1152 ) 

- Ren Ran 
( 

11 143Pr2c3 3551 Prc3 
1400~1152~ 

+ 
1400x 11523 

11 143c3 7lc 
+-------- 

1400x 11523 + 3840 x 4608 > . 
(78) 

The following implication of equations (77) and (78) 
is worthy of note. In the limiting case with no curva- 
ture, rotation and heating/cooling, the present prob- 
lem becomes identical to the asymptotic solution for 
constant property forced convection in a stationary 
straight tube and was reported in ref. [19]. For this 
limiting case Nu, = 6 and clearly equation (77) 
approaches to this value asymptotically as 0 -+ 0, 
Re, -+ 0 and Ran + 0. Dividing equation (77) by Nu, 
for a stationary straight tube, we have 

NM llcQ, _=~ 
N4 96rl, 

(79) 

Typical variations of the Nusselt number given by 
equation (79) are presented in Fig. 6(b) for a range of 
L2 at 0 = 0.02, c = 60, and Pr = 0.7. Although it is 
likely that the solution is being extended beyond its 
range of validity at the higher values of L,, the physical 
trends are quite evident. As expected, the heat transfer 
is enhanced significantly due to the presence of the 
secondary flow, and the similarity between the main 
flow and temperature distribution leads to a similarity 
in the results for friction factor and Nusselt number. 
Like the friction factor, the Nusselt number is also 
identical or very close to that for constant property 
forced convection in a stationary straight tube in the 
region with the four-cell secondary flow. An increase 
in IL,1 from this region causes the secondary flow to 
become stronger. Consequently, the Nusselt number 
increases substantially at higher values of the IL,(. 
The higher value of L, leads to a relatively greater 
enhancement of heat transfer for the case in which the 
value of L, is at the left of the region with the lowest 
value of the Nusselt number, but a relatively smaller 
enhancement when the value of L, is at the right of 
the region. 

At the present stage, the structure of the solutions 

has not been explored completely. On the other hand, 
it appears that no experimental results of friction fac- 
tors or Nusselt numbers for a rotating curved tube 
with heating or cooling effect are available. Thus, the 
range of validity for equations (76) and (79) remains 
to be checked in future. 

3.5. Structure of solutions 
In practical problems, the Reynolds number Re is 

usually given, while the pseudo Reynolds number c, 
which is defined by the pressure gradient along curved 
tube axis, is often unknown. An expression for the 
pseudo Reynolds number c in terms of Re, 0, Ren and 
Ran may be obtained by inverting equation (74) and 
ignoring the higher-order terms as 

with 

c = ReT (80) 

I-= 1+ 
1541Re4 1lRe’ 1 

3150x1152= 
___- c= 

+ 17280 48 > 

( 

Re’ 
+--- 

28 x 768= 
+A R$t 

> 

5203 Re; Rah 
350x 1152’ 

( 

111Re2 
+ 

280x 11522 + &,)aReRen - (50 ;;;;1252? 

+ 240:91152)aReRan-(430~~::4608 

1 

+ 23 040 
__ Re,Ra,. 

> (81) 

Introducing the following nondimensional par- 
ameters : 

De= Re&; Dn = ReRe, ; Dr = ReRa, 

(82) 

the expression of I- becomes 

T&C+ 1541(De2)2 + DA 
48 3150x 1152= 28 x 768= 

+ 
5293Dr’ Rek 1 1aDe2 aD, 

350x 1152’ +9216+ 17280 +i% 

29aDr 111De2Dn 8077De2 Dr 
24Oxll52+280x11522-50400x1522 

97DnDr RenDr 
-430080x4608-%%%’ (83) 

The second-order solution (8) along with equations 
(38)-(68), may be expressed as 

4 = Bez$&+@&Yo +fir’&t, +de”4‘& 

+&q% +dr’&k!, +afie’&& +a&$::,, 

+adr2+Iit +de2Bn~~~0+Be2~r~~~, +d,dr~~~, 



+ Pr6ezdr&b, + Prd,L%&~, + Prf%‘c#& (84) 
and heat transfer in radially rotating straight tubes 
(the Coriolis problem). The third pair, Pr and Dr, 

IS’ = R&v::‘” -I- crw;;, + de’w;6’” + Dn”‘;:),, characterizes the flow and heat transfer due to the 
inertial and buoyancy forces (the mixed convection ^ 

+DYw;:, +a’~;;, +&“w;;,, + Re~w& +&M’;;~ problem). (r. the curvature ratio of the curved tube, is 

+ Br’ bvdi2 + ade’tt~J~~,l + cD,~.fy~~ + aDrn~~~i, 
important for the problems in the helical tube with 
tightly wound coils. Dean number. De, characterizes 

_ ^ 
+ L%~,,v~~,, + &‘dr,t~f~~, + Dc,Dr,~~:‘, the flow and heat transfer in the coiled tubes with 

loosely wound coils. Re,, whose effect for problems 
+ Pr~e’Drw:j,, + Prdr’ LV~~:,, + Pr6,L%,,~c~ I ,] in radially rotating straight tube is analogous to that 

- 7 + Re,Drwi,:‘, + Dr-w$j, (85) 
of 0 for the stationary curved tube, is the ratio of the 
Coriolis force to the viscous force. It is important for 

“Ti,, - 
rl = Reh% +vi&, + D~-‘I~~N, + Dn-)?ifr, +DrvriH, problems in the radially rotating tube if Dn is small. 

DC,, whose effect for the problems in the radially ro- 
^ 4 io 7 

+ c?v/;& + De qjoo + Re,+/,$, + Rr,w,:;,, tating straight tube is analogous to that of the square 

+S$& + dr’r&~2 +crrir’&, + ~~L&,qf’i,, 
of the Dean number for the stationary curved tube, 
represents the ratio of the product of the inertial and 

+odrqyii, + PrBr’q:&, + Prd,,&l,, + Pr&~,\, Coriolis forces to the square of the viscous forces. It 
determines the flow and heat transfer in the radially 

+ de’D,q: I o + de’drq;‘:‘,, + 6nlhq~‘/, rotating straight tube if Re, is small (i.e. slowly ro- 

+ Prdr4q;b,, + Prd$y~~c, + Prdr’qi(:2 
tating). Dr represents the ratio of the product of the 
inertial and buoyancy forces to the square of the vis- 

+oPrae*~:~“+aPrd,~f/,,+~Prdrr?~I,, cous forces. Dr and Prandtl number Pr are two charac- 
teristic parameters for the mixed convection problem. 

+ PrBe’dnfl;l~o+ PrLG’drq:~,, + PrdnLirqiI, If each of these parameters is significant, the solu- 

+ Pr2L2&, + Pr2L&ii,, + Pr2dr’q~~2 
tion becomes a sixfold series expansion in g, DP, Re,, 
D,, Pr and Dr. It appears that no successful technique 

f PrZdeLdn$fo + Pr’lh’drq~f,, + Pr21Jndrq$;’ ,] is available for analyzing and improving such a mul- 
tiple series. However, for some special cases, the series 

+ Re,Lh&:), +b’v& (86) may be reduced to a single series. For example, the 

in which 
solution series for the fully developed steady laminar 
flow through a radially rotating straight tube becomes 

J&=ReP; L%=Der: d,=DnF; dr=DrP a single series if the tube is rotating slowly and the den- 

(87) 
sity of the fluid is taken to be constant. Mansour [20] 
expanded this single series up to 34 terms in powers 

and the parameter-free expansion coefficients 4$. of Dn. Recasting the resulting series for the friction 

vi:; and r$ are introduced by factoring out the par- ratio. he predicted that it will grow asymptotically as 

ameters c and Pr from 4Z,1. I\‘,,~ and qtii. i.e. the I,18 power of D,. Van Dyke [IO] extended Dean’s 
four-term series for the loosely coiled tube to 24 terms 

4:; = items in +,,/. including ith power of (’ in power of De. The series. re-casted by Van Dyke, 

and,jth power of Pr divided by c’Pr’. 
is considered to be valid for arbitrarily large Dean 
number. Similar work has been done by Van Dyke 

A similar remark is also true for n$ and s$, Thus [I I] for Morton’s series for fully developed laminar 

4 ;;, I$ and r$ depend on r and cp only and are flow through a uniformly heated horizontal tube. He 
independent of the flow region, i.e. the relative size of extended the series by computer to 3 I terms in powers 
each term in these series depends on the magnitudes of a parameter E which is similar to Dr of this work. 
of the parameters. but the shape of each term is always He found that the Nusselt number grows asymp- 
the same. Note that Rr is fixed once De and 0 are totically as the 2/l 5 power of the parameter E. 
specified, the solutions for velocity and temperature From the definition of 15, and 15~ [equation (42)], 
may be regarded as the infinite series (higher-order 
approximations would produce additional types of 
terms) in powers of 0, de’, Re,, d,, Pr and dr. In 
view of the expressions (82) and (83) for F (in fact 
F = 1 for small values of the parameters), the series 
may also be considered as in powers of 0, De’, Rr,, 
Dn, Pr and Dr. Thus. L, represents the ratio of the characteristic par- 

The first pair of parameters, d and De’, charac- ameter L& for the rotating straight tube to the charac- 
terizes the flow and heat transfer in stationary helically teristic parameter de’ for the stationary curved tube. 
coiled tubes (the Dean problem). The second pair, Similarly, LZ represents the ratio of the characteristic 
Ren and Dn, determines the characteristics of the flow parameter Br for the mixed heat transfer problem to 

3398 L. WANG and K. C. CHENG 



Flow transitions and convective heat transfer 3399 

Table 2. Physical implications of Be’, an, dr, L, and L, 

Parameter Force ratio 

de*(De’) (inertial force) x (centrifugal force) 

(viscous force)* 

&On) (inertial force) x (Coriolis force) 

(viscous force)’ 

L%(Dr) (inertial force) x (buoyancy force) 

(viscous force)* 

L, Coriohs force 
centrifugal force 

L2 buoyancy force 
centrifugal force 

the characteristic parameter Be* for the stationary 
curved tube. 

In terms of the force ratios, the physical impli- 
cations of Be*, & L%, L, and Lz are summarized in 
Table 2. 

4. CONCLUDING REMARKS 

For any continuous function of one or more vari- 
ables, there exists a unique, uniformly convergent 
polynomial which can be used to approximate the 
function. Assuming that the stream function 4, the 
main velocity w and the temperature rl are continuous 
on the curvature ratio O, the rotational Reynolds num- 
ber Ren and the rotational Rayleigh number Ran, 
a systematic method is developed to determine an 
approximate analytical solution for velocity and tem- 
perature fields in a rotating curved tube under the 
conditions that the flow and temperature fields are 
fully developed, and the wall heat flux is uniform with 
peripherally uniform wall temperature. 

Each of the functions 4, w and q is expanded in a 
triple power series in terms of U, Re, and Ran. The 
coefficients in these expansion series may be obtained 
from the solutions of the associated nonhomogeneous 
harmonic and biharmonic differential equations. In 
calculating each additional term of the series, the 
terms on the right hand sides of the harmonic and 
biharmonic differential equations, are in terms of the 
functions determined from the solution of the pre- 
ceding harmonic and biharmonic differential equa- 
tions. Therefore the successive solutions of the three 
main differential equations will produce as many 
terms as desired for the three series, depending upon 
the accuracy required. In this work, the solution is 
carried up to and including the second-order terms. 
As well, the analytical expressions for the velocity 
and temperature distributions are applicable for both 
heating and cooling cases with either positive or nega- 
tive rotation. The solutions of velocity and tem- 
perature are found to be infinite series in powers of 

three pairs of parameters which characterize the Dean, 
the Coriolis and the mixed convection problems, 
respectively. 

By setting any one or two of (r, Ren and Ran to be 
zero, the solution reduces to the corresponding six 
special cases, i.e. the Dean problem, Coriolis problem, 
mixed convection problem, Dean problem with effect 
of rotation, Dean problem with effect of heating/ 
cooling and Coriolis problem with effect of heating/ 
cooling. 

The centrifugal, Coriolis and buoyancy forces all 
contribute to the generation of the secondary flow in 
a rotating curved tube. The resultant secondary flow 
may be grouped under three broad patterns depending 
on the values of two dimensionless parameters L, and 
L2. The first parameter represents the ratio of the 
characteristic dimensionless parameter L?, for a radi- 
ally rotating straight tube to the characteristic dimen- 
sionless parameter 6e’ for a stationary curved tube. 
The last one, on the other hand, is the ratio of the 
characteristic dimensionless parameter & for mixed 
convection to the de’. The results presented here 
extend the range of parameters for which the flow in 
rotating curved tubes has been studied, especially as 
regards the secondary flow reversal and the four-cell 
flow structure. 

The presence of the secondary flow causes the deri- 
vation of the main velocity and temperature profiles 
away from the parabolic profile in Poiseuille flow. In 
particular, the locations of the maximum main vel- 
ocity and the extreme temperature are moved away 
from the centre of the tube in the direction of the 
secondary velocities in the middle of the tube. This 
results in a pronounced peripheral variation of friction 
factor and Nusselt number and a significant increase 
in the mean friction factor and Nusselt number. How- 
ever, in the flow region with a four-cell structure, the 
secondary flow is too weak to modify the main velocity 
and temperature profiles effectively, such that the fric- 
tion factor and Nusselt number are identical or very 
close to those for constant property forced convection 
in a stationary straight tube. 

The profiles of the main velocity and temperature 
show that the boundary layer theory is not valid for 
the analysis of the flow and heat transfer in a rotating 
curved tube for a range of parameters considered in 
this work. 
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